Geometry of the Cramer-Rao bound
نویسندگان
چکیده
The Fisher information matrix determines how much information a measurement brings about the parameters that index the underlying probability distribution for the measurement. In this paper we assume that the parameters structure the mean value vector in a multivariate normal distribution. The Fisher matrix is. then a Gramian constructed from the sensitivity vectors that characterize the first-order variation in the mean with respect to the parameters. The inverse of the Fisher matrix has several geometrical properties that bring insight into the problem of identifying multiple parameters. For example, it is the angle between a given sensitivity vector and the linear subspace spanned by all other sensitivity vectors that determines the variance bound for identifying a given parameter. Similarly, the covariance for identifying the linear influence of two different subsets of parameters depends on the principal angles between the linear subspaces spanned by the sensitivity vectors for the respective subsets.
منابع مشابه
Improved Cramer-Rao Inequality for Randomly Censored Data
As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...
متن کاملتخمین جهت منابع با استفاده از زیرفضای کرونکر
This paper proceeds directions of arrival (DOA) estimation by a linear array. These years, some algorithms, e.g. Khatri-Rao approach, Nested array, Dynamic array have been proposed for estimating more DOAs than sensors. These algorithms can merely estimate uncorrelated sources. For Khatri-Rao approach, this is due to the fact that Khatri-Rao product discard the non-diagonal entries of the corre...
متن کاملتخمین جهت منابع با استفاده از زیرفضای ختری-رائو
This paper deals with Direction of Arrival (DOA) Estimation using Uniform linear array (ULA) for the case of more sources than sensors in the array processing. Khatri-Rao subspace approach, introduced for DOA estimation for this, in non-stationary signal model. The technique will be shown to be capable to handle stationary signals, too. Identifiability conditions of this approach are addressed....
متن کاملCramer-Rao Lower Bound and Information Geometry
This article focuses on an important piece of work of the world renowned Indian statistician, Calyampudi Radhakrishna Rao. In 1945, C. R. Rao (25 years old then) published a pathbreaking paper [43], which had a profound impact on subsequent statistical research. Roughly speaking, Rao obtained a lower bound to the variance of an estimator. The importance of this work can be gauged, for instance,...
متن کاملCramer-Rao Lower Bound Computation Via the Characteristic Function
The Cramer-Rao Lower Bound is widely used in statistical signal processing as a benchmark to evaluate unbiased estimators. However, for some random variables, the probability density function has no closed analytical form. Therefore, it is very hard or impossible to evaluate the Cramer-Rao Lower Bound directly. In these cases the characteristic function may still have a closed and even simple f...
متن کاملCramer-Rao Bounds for Nonparametric Surface Reconstruction from Range Data
The Cramer-Rao error bound provides a fundamental limit on the expected performance of a statistical estimator. The error bound depends on the general properties of the system, but not on the specific properties of the estimator or the solution. The Cramer-Rao error bound has been applied to scalarand vector-valued estimators and recently to parametric shape estimators. However, nonparametric, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 31 شماره
صفحات -
تاریخ انتشار 1993